Brain blood flow and blood pressure during hypoxia in the epaulette shark Hemiscyllium ocellatum, a hypoxia-tolerant elasmobranch.

نویسندگان

  • V Söderström
  • G M Renshaw
  • G E Nilsson
چکیده

The key to surviving hypoxia is to protect the brain from energy depletion. The epaulette shark (Hemiscyllium ocellatum) is an elasmobranch able to resist energy depletion and to survive hypoxia. Using epi-illumination microscopy in vivo to observe cerebral blood flow velocity on the brain surface, we show that cerebral blood flow in the epaulette shark is unaffected by 2 h of severe hypoxia (0.35 mg O2 l-1 in the respiratory water, 24 C). Thus, the epaulette shark differs from other hypoxia- and anoxia-tolerant species studied: there is no adenosine-mediated increase in cerebral blood flow such as that occurring in freshwater turtles and cyprinid fish. However, blood pressure showed a 50 % decrease in the epaulette shark during hypoxia, indicating that a compensatory cerebral vasodilatation occurs to maintain cerebral blood flow. We observed an increase in cerebral blood flow velocity when superfusing the normoxic brain with adenosine (making sharks the oldest vertebrate group in which this mechanism has been found). The adenosine-induced increase in cerebral blood flow velocity was reduced by the adenosine receptor antagonist aminophylline. Aminophylline had no effect upon the maintenance of cerebral blood flow during hypoxia, however, indicating that adenosine is not involved in maintaining cerebral blood flow in the epaulette shark during hypoxic hypotension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia Tolerance in the Epaulette Shark (Hemiscyllium ocellatum)

The epaulette shark, Hemiscyllium ocellatum, is a tropical reef shark that can live in an environment with cyclic periods of low oxygen concentration, suggesting that it has a well-developed capacity for anaerobic metabolism. Most investigations of hypoxia-tolerant teleosts and reptiles have focused on species that inhabit cold environments. This study was carried out on a tropical reef shark i...

متن کامل

Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures.

Cardiovascular function and metabolic responses of the heart and other tissues during hypoxia exposure were compared between the hypoxia-tolerant epaulette shark (Hemiscyllium ocellatum) and the hypoxia-sensitive shovelnose ray (Aptychotrema rostrata). In both species, progressive hypoxia exposure caused increases in stroke volume and decreases in heart rate, cardiac output, cardiac power outpu...

متن کامل

Will ocean acidification affect the early ontogeny of a tropical oviparous elasmobranch (Hemiscyllium ocellatum)?

Atmospheric CO2 is increasing due to anthropogenic causes. Approximately 30% of this CO2 is being absorbed by the oceans and is causing ocean acidification (OA). The effects of OA on calcifying organisms are starting to be understood, but less is known about the effects on non-calcifying organisms, notably elasmobranchs. One of the few elasmobranch species that has been studied with respect to ...

متن کامل

A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2

Ocean acidification, resulting from increasing anthropogenic CO2 emissions, is predicted to affect the physiological performance of many marine species. Recent studies have shown substantial reductions in aerobic performance in some teleost fish species, but no change or even enhanced performance in others. Notably lacking, however, are studies on the effects of near-future CO2 conditions on la...

متن کامل

Transcriptional responses to hypoxia are enhanced by recurrent hypoxia (hypoxic preconditioning) in the epaulette shark.

All animals require molecular oxygen for aerobic energy production, and oxygen availability has played a particularly important role in the evolution of aquatic animals. This study investigates how previous exposure to hypoxia (preconditioning) primes protective transcriptional responses in a hypoxia-tolerant vertebrate species, the epaulette shark (Hemiscyllium ocellatum). The epaulette shark ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 202 Pt 7  شماره 

صفحات  -

تاریخ انتشار 1999